Gap structure of the Hofstadter system of interacting Dirac fermions in graphene.
نویسندگان
چکیده
The effects of mutual Coulomb interactions between Dirac fermions in monolayer graphene on the Hofstadter energy spectrum are investigated. For two flux quanta per unit cell of the periodic potential, interactions open a gap in each Landau level with the smallest gap in the n=1 Landau level. For more flux quanta through the unit cell, where the noninteracting energy spectra have many gaps in each Landau level, interactions enhance the low-energy gaps and strongly suppress the high-energy gaps and almost close a high-energy gap for n=1. The signature of the interaction effects in the Hofstadter system can be probed through magnetization, which is governed by the mixing of the Landau levels and is enhanced by the Coulomb interaction.
منابع مشابه
Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
The fractal spectrum of magnetic minibands (Hofstadter butterfly), induced by the moiré superlattice of graphene on a hexagonal crystal substrate, is known to exhibit gapped Dirac cones. We show that the gap can be closed by slightly misaligning the substrate, producing a hierarchy of conical singularities (Dirac points) in the band structure at rational values Φ = (p/q)(h/e) of the magnetic fl...
متن کاملOrbital magnetization of interacting Dirac fermions in graphene
We present a formalism to calculate the orbital magnetization of interacting Dirac fermions under a magnetic field. In this approach, the divergence difficulty is overcome with a special limit of the derivative of the thermodynamic potential with respect to the magnetic field. The formalism satisfies the particle-hole symmetry of the Dirac fermions system. We apply the formalism to the interact...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملFractional quantum Hall effect in Hofstadter butterflies of Dirac fermions.
We report on the influence of a periodic potential on the fractional quantum Hall effect (FQHE) states in monolayer graphene. We have shown that for two values of the magnetic flux per unit cell (one-half and one-third flux quantum) an increase of the periodic potential strength results in a closure of the FQHE gap and appearance of gaps due to the periodic potential. In the case of one-half fl...
متن کاملMassive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure.
van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 112 17 شماره
صفحات -
تاریخ انتشار 2014